

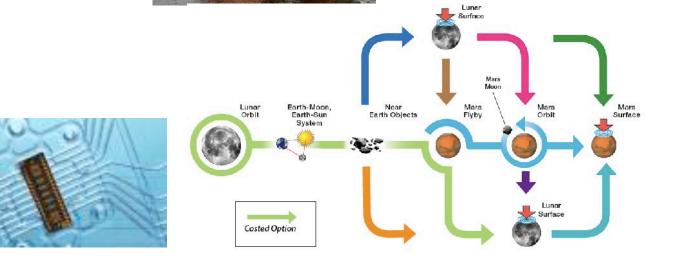
Architecting Systems to Create Value

Ed Crawley

Ford Professor of Engineering, MIT Founding President, Skoltech

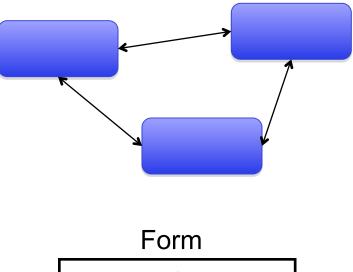
> With thanks to: Dr. Bruce Cameron Prof. Dov Dori Many students!

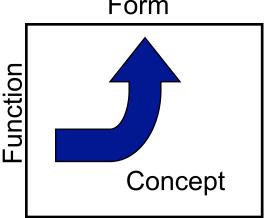
> > 2016 Sept 28


The Challenge

- We conceive, design, implement and operate complex and sometimes unprecedented systems
- Do they deliver sustained value?
- Are they architected well?

D 2

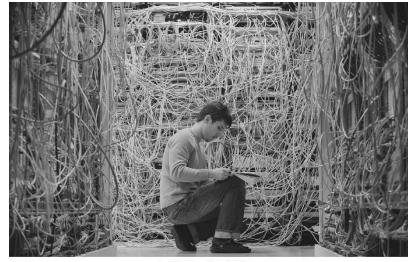




System + Architecture

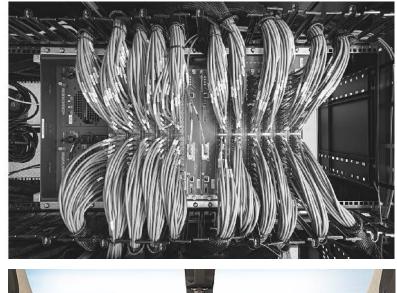
System: A set of interrelated entities which perform a function, whose functionality is greater than the sum of the parts


Architecture: The embodiment of <u>concept</u>, and the allocation of physical/informational <u>function</u> to elements of <u>form</u>, and definition of <u>relationships</u> among the elements and with the surrounding <u>context</u>.



Architecture is Form + Function

Complex Systems



Coowlight @2016 Tearson Education, All Rights Reserve

Concord cockpit – www.canovair.com

Made Less Complicated

A Principle: complexity exceeds comprehension

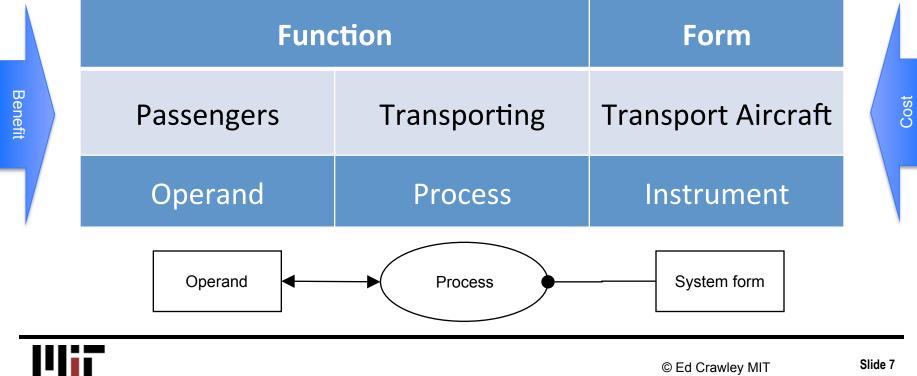
1411

The Power and Magic of Systems is in Emergence

Function

Performance

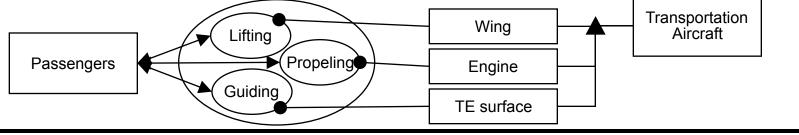
IIIiT Reliability


Emergencies

Slide 6

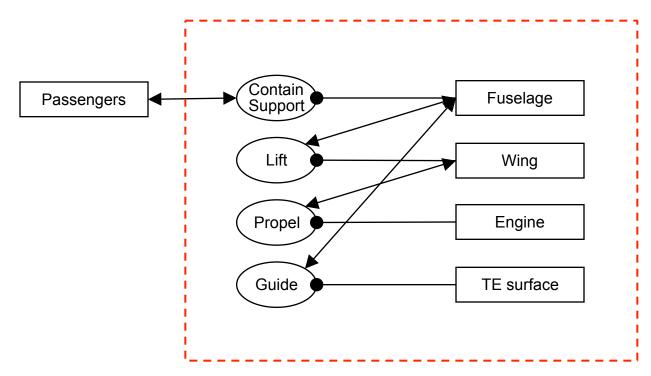
Form and Function of the System

 How do we predict emergence?



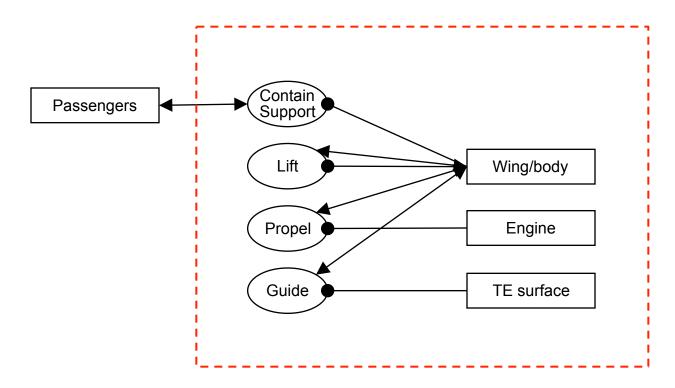
Entities of the System: Form and Function

- Holism and focus
- Divide and conquer


System Function	Entity Function	Entity Form	System Form
Move	Lift payload Propel vehicle	Wing Air breathing engine	Transport Aircraft
Passengers	Stabilize/ guide vehicle	Trailing edge surfaces	

Relationships: Form and Function

- Interactions occur when operands are shared
- Emergence is in interaction

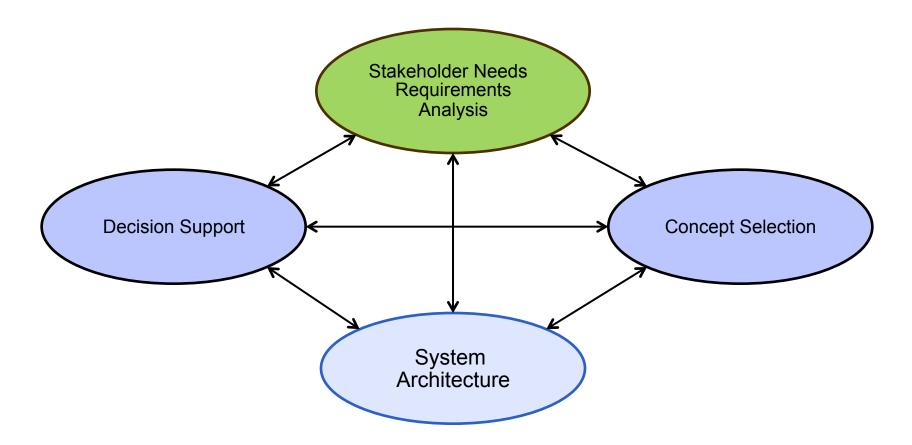


Relationships: Form and Function

• A different concept brings different interaction

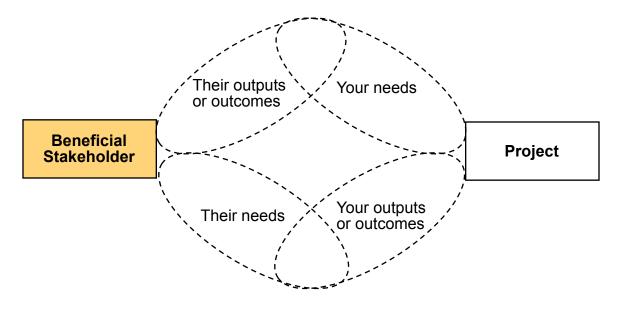
Slide 10

Desired Emergence?

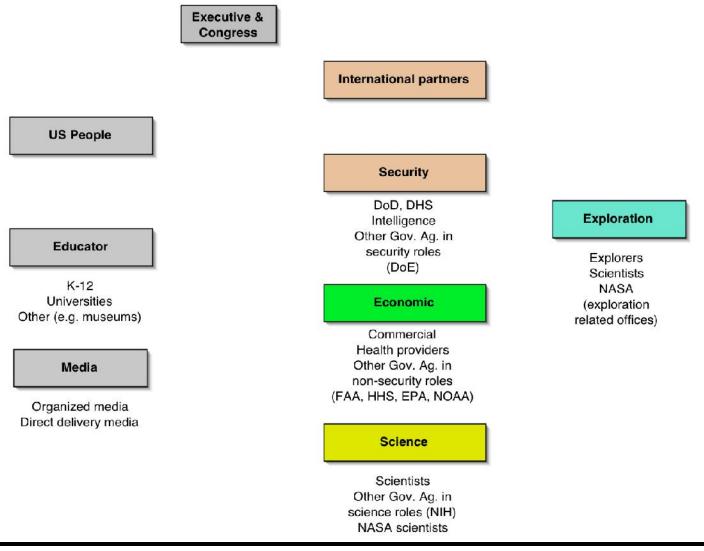


FLIGHT	DESTINATION	TIME	status	GATE	
PA 003	SAN FRANCISCO	00130	BOARDING	12	
LX 345	S LONDON	01:45	GO TO GATE	3-4	
8A 030	SINGAPORE	02115	ON TIME	15	
LA 020	LOS ANGELES	02:00	CANCELLED	13	•
FE 456	BRISBANE	02:30	ON TIME	17	
LX 452	LONDON HTHROW	02:45	ON TIME	1.9	9.1
BK 431	MEXICO CITY	02:30	ON TIME	2.5	9.1
11 612	UPSPOUPITIT	02:30	ON TIME	09	
QW 117	S MANTLA	03:00	ON TIME	2.6	
CO 212	S CHICAGO	03:25	ON TIME	21	
8X 006	PORTLAND	03:30	ON TIME	0.4	
WA 026	BALI -	03:45	ONTIME	03	

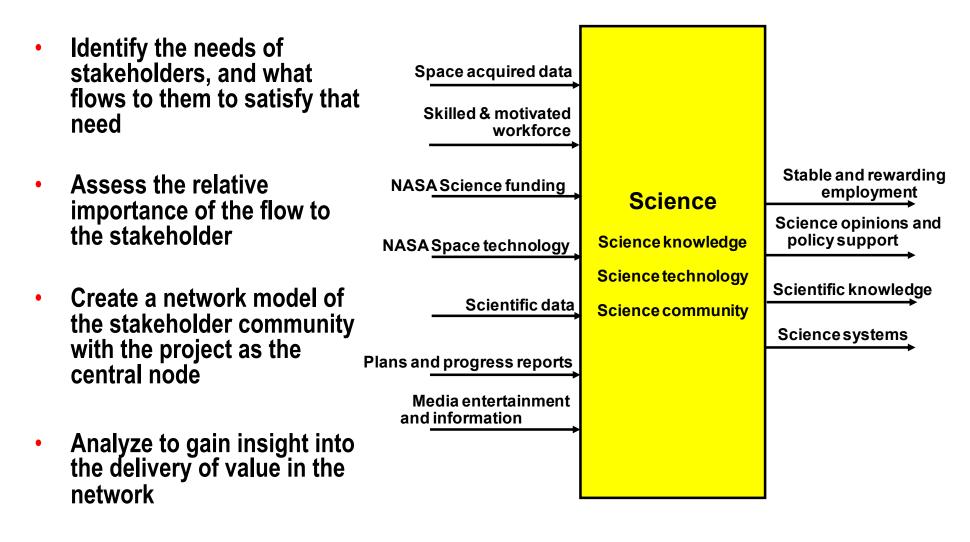
- Emergence can be predicted *a priori* by:
 - Precedent
 - Experimentation
 - Modeling
- For other systems, only human reasoning can be relied on to predict emergence – functional modeling helps guide us



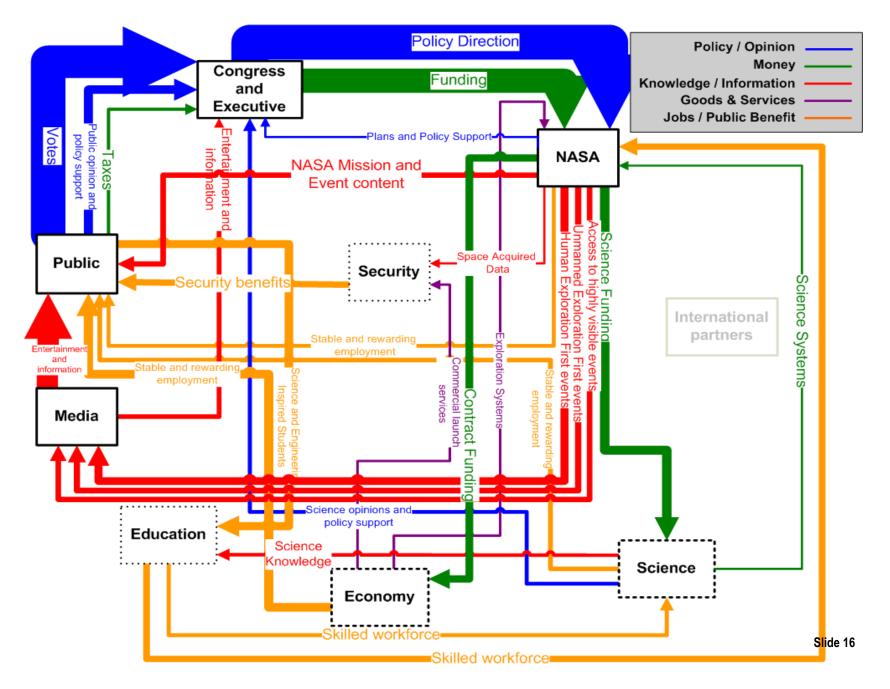
Comprehensive Analysis of System Architectures


- These all systems! Use system thinking
- Requirements and concepts are intellectual stepping stone

Exchange Model of Stakeholder Interaction


- Value is delivered in an exchange benefit at cost
- Successful exchange with a stakeholder occurs when:
 - Your outputs or outcomes meet their needs (benefit to them)
 - Their outputs or outcomes meet your need (cost to them)
- A Principle: the basis of stakeholder engagement

Identify Stakeholders for Human Space Exploration

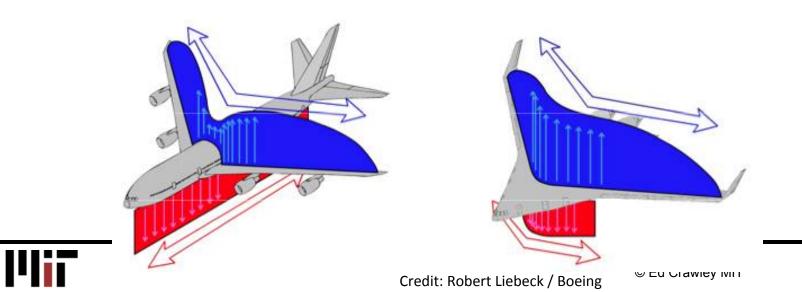

1411

Model Needs of Each Stakeholder

Modeling Value Flow in Stakeholder Network

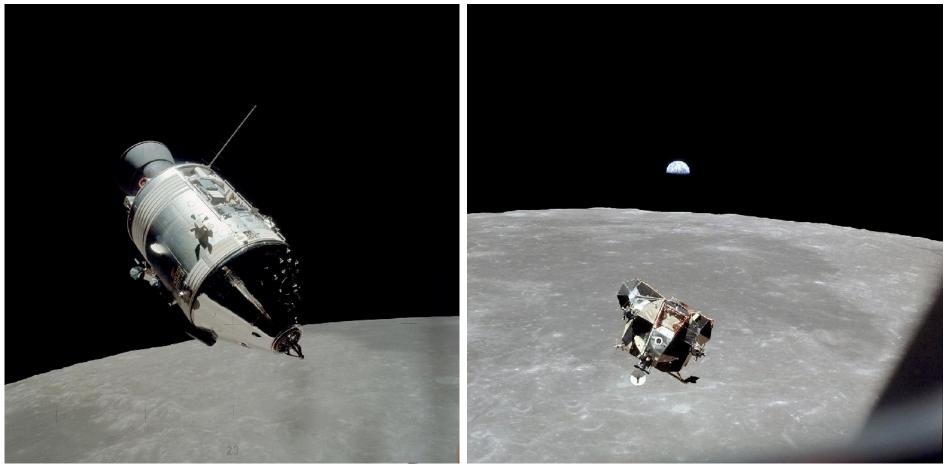
Key Architectural Decisions

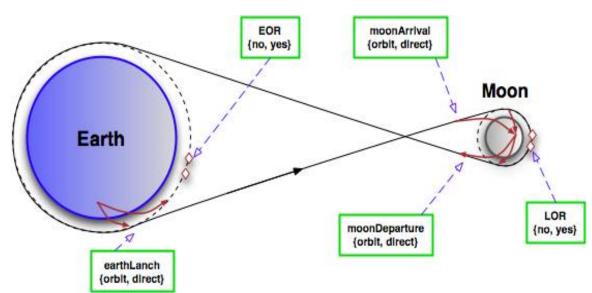
Tube and Wing Family



What are the key architectural features that separate these two designs?

What are the decisions?

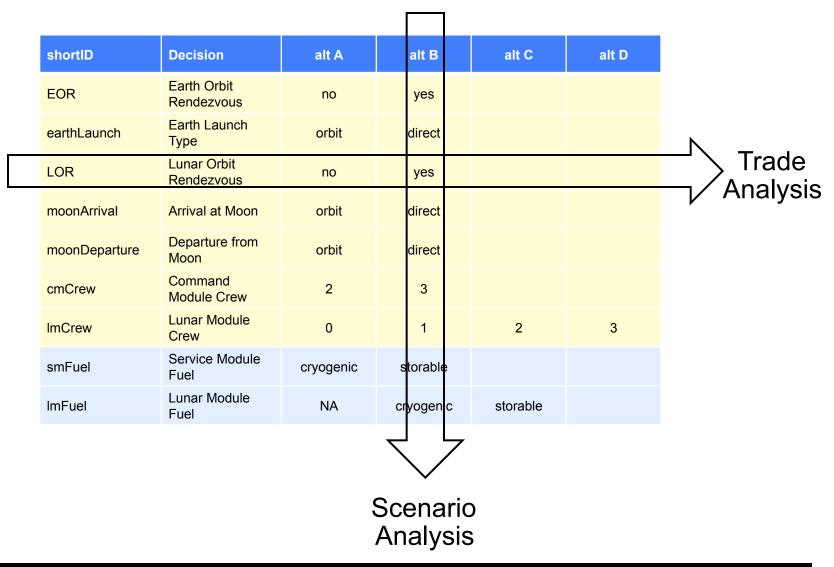

Architectural? Sensitive? Connected? **BWB** Family


Slide 17

Apollo Architecture – What are the Decision?

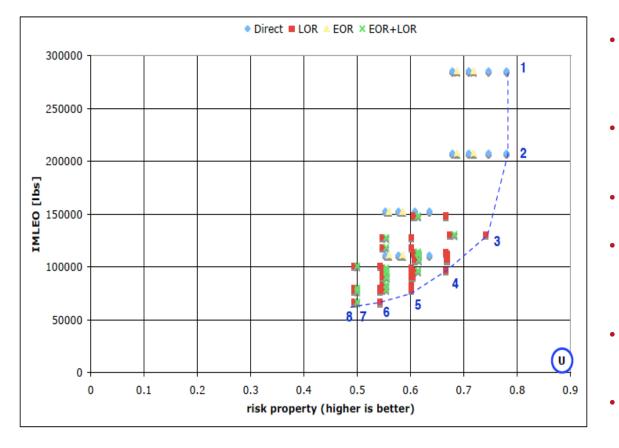
Source: http://www.hq.nasa.gov/alsj/a17/AS17-145-22261HR.jpg

Identifying the Decisions and Choices – Apollo


- Mission parameters:
 - Mission mode related (Earth launch, EOR, Moon arrival, LOR, Moon departure)
 - Command Module Crew: 2 or 3?
 - Lunar Module Crew: N/A, 1, 2 or 3?
- Fuel/propulsion type related:
 - Service module fuel: cryogenic or storable?
 - Lunar module fuel: N/A, cryogenic or storable?

• The three major categories of mission modes are captured : Direct, EOR, and LOR.

9 Decisions !

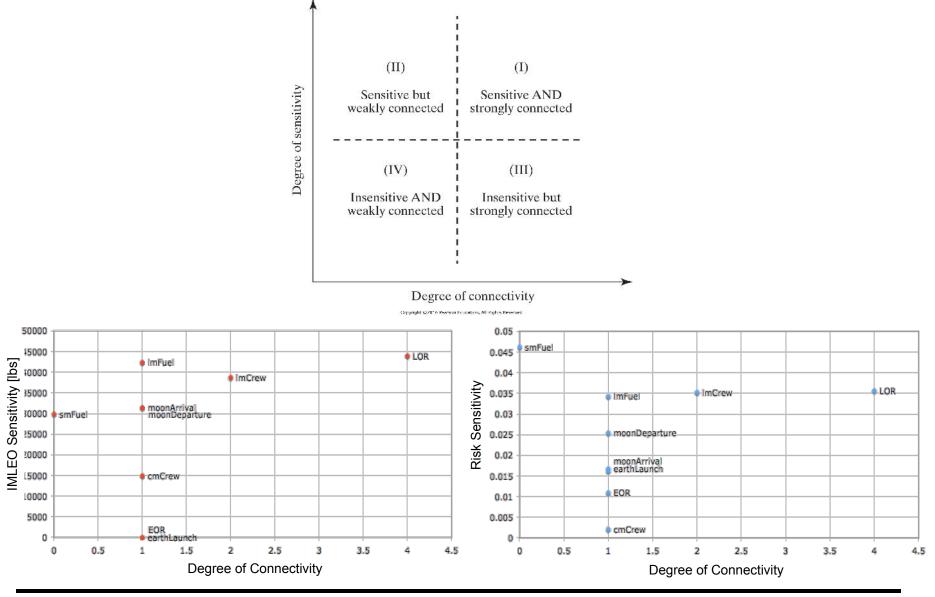


Representing the Decisions and Choices

Non - dominated Feasible Solutions

• IMLEO vs. mission success probability

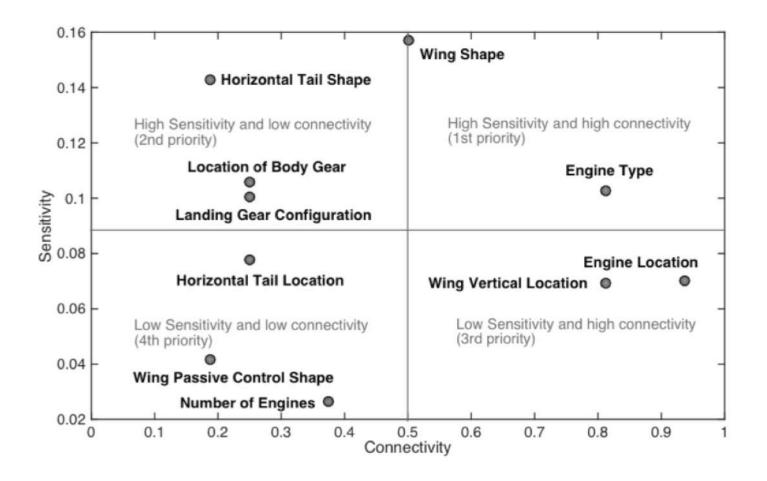
Prob of mission success


Points on the Pareto front:

- Point 1: <u>von Braun-like</u>: Direct Mission, with 3 crew, storable propellants
 - Point 2: Direct with 2 crew, storable propellants
 - Points 3, 4, 5, 6: LOR missions.
- Point 3 is <u>Apollo-like</u>: LOR mission, storable propellants, 3 crew, 2 to surface
- Point 7: EOR mission, 2 crew with cryogenic propellants
- Point 8: <u>Soviet-like:</u> min mass configuration, LOR, 2 crew, 1 to surface,.

About 3 Good Architectures

Decision Space View: helps us understand decision sequence

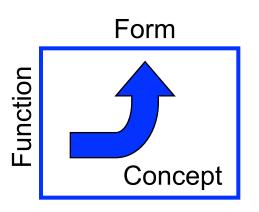

14117

Decision Space

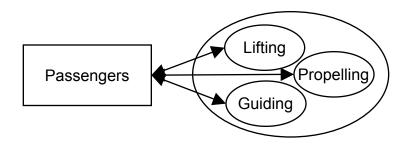
			Fund	ction 1: Lifting pay	load							
	Wing Vertical Location	High Wing	Mid Wing	Low Wing								
Wing	Wing Shape	Rectangular	Tapered	Delta	Swept Back	Elliptical						
	Passive Control Shape	Dihedral	Anhedral	Straight								
			Function 2: Accelerating payload									
	Engine Type	Piston Prop	Turboprop	Turbofan	Turbojet							
Engines	Number of Engines	1	2	3	4							
	Engine Location	Inside Vertical Tail	Side of fuselage aft of wing	Under Wing	Above Wing	In Wing etc.						
			Functio	n 3: Maintaining s	tability							
Stabilizer	Vertical Location	Fuselage (Inverted-T)	Vertical Tail (T- Tail)									
5(85)11201	Shape	Swept back	Tapered	Straight	Elliptical							
			Func	tion 4: Taxiing pay	vload							
	Landing gear Arrangement	Single Main	Tail Dragger	Tricycle	Tricycle w/ triple body gear							
Landing gear	Location of stowed landing gear	In the Wing	Wing Podded	In the Fuselage	Fuselage Podded	Wing-Fuselage	In Nacelle					

Includes 157 production 30+ seat civil transports since the DC3 (in 45 distinct architectures)

Decision Space View: helps us understand key decisions



 Sensitivity is based on real historical data for a metric that includes fuel efficiency, T/W, V_{cruise}, price


Concept - Definition

- A product or system vision, idea, notion or mental image which maps Function to Form
- Embodies principle of operation
- Includes an abstraction of form
- Concept rationalizes the structure of the architecture (Imrich)
- Establishes the solution-specific vocabulary - it is the beginning of the architecture

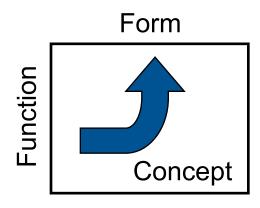
Concept Exploration - Transporting

 Concepts vary by the assignments of the principle internal functions to form

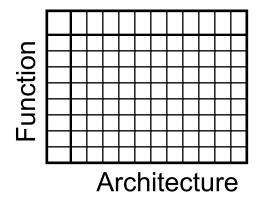
Function:	Internal Function:	Form	Form 2
Transporting payload	Lifting	Wheels	Wing
	Propelling	Wheels	Air breathing engine
	Guiding	Wheels	TE surfaces

Exercise: Concepts

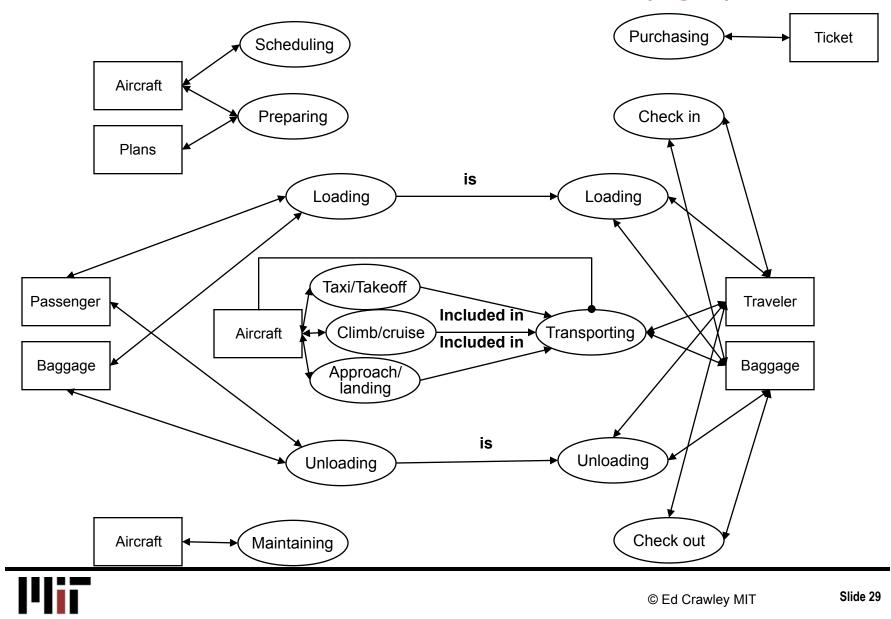
Delivered process	Internal processes	Instrument	Car		?	?	?		
Transporting	Lifting	Wheels	Х		Х				
		Wings							
		Propeller				Х			
		Closed hull					Х		
	Propelling	Wheels	x	x		x x			
		Propeller				х	Х		
	Guiding	Wheels	x						
		"Ground"			Х				
		Rudder/TE					х		
		Propeller				Х			
		~			-				
		C	ond	;e	pt				
14 1 17									







Concept to Architecture



- Concept is a system vision, which maps Function to Form
- Contains first level functions and form
- Architecture includes the details of the assignment of function to form
- Process flow, internal operands, internal processes, interface definition

Concept of Operations of the Aircraft (left) and of the Service of Air Transportation (right).

Decomposition of Function

Level 0

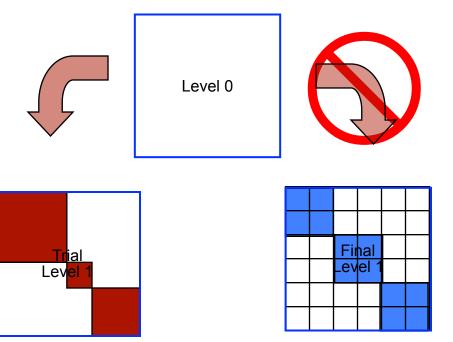
- Successive decomposition from 1 to 28 functions
- Ordered roughly by sequence
- Only one level 2 function is "transporting passenger"
- Is this a good decomposition?

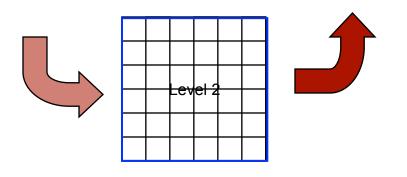
		linking
		learning
	ticketing	reserving
		purchasing
		amending
		arriving airport
		issuing
		checking
	checking in	inspecting
		examining
		alerting
		changing
		loading
	loading	embarking
		storiing
transporting		informing
		entertaining
		nourising
	transporting	transporting
		conveying
		shipping
		evacuating
		collecting
	unloading	disembarking
		unloading
		collecting
	checking out	departing airport
		crediting

Level 1

Leevel 2

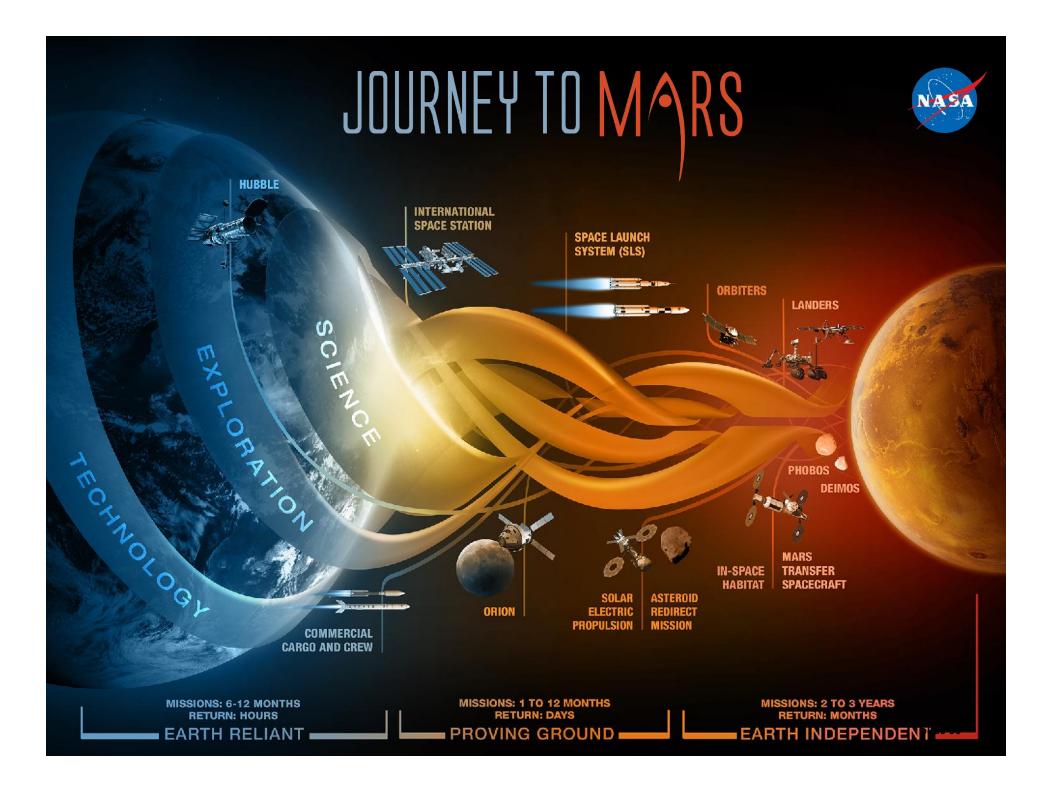
1 function


28 functions

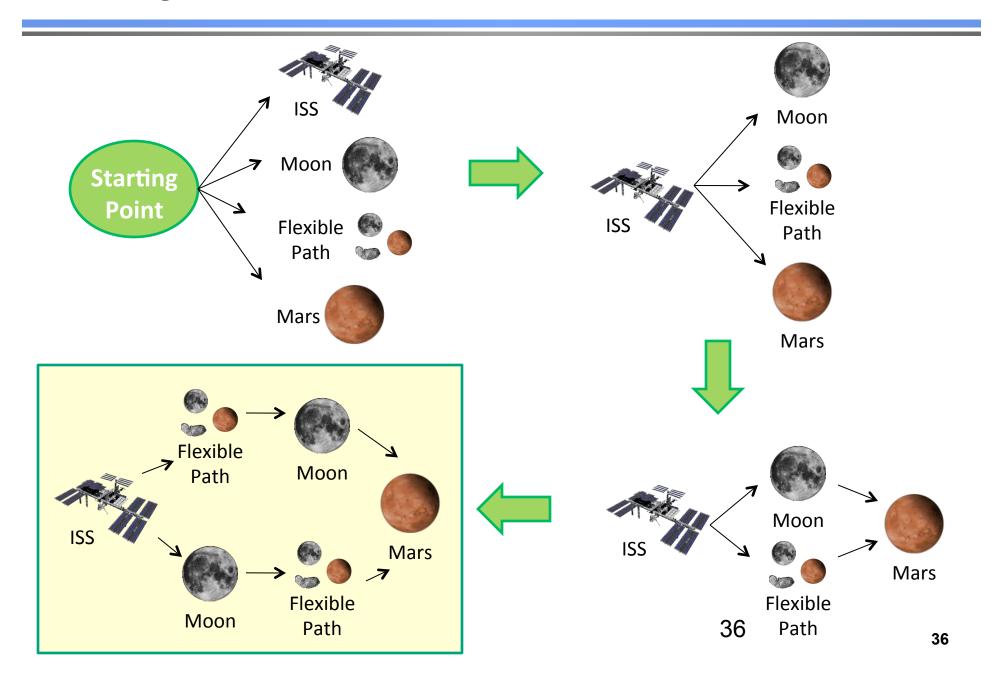


6 functions

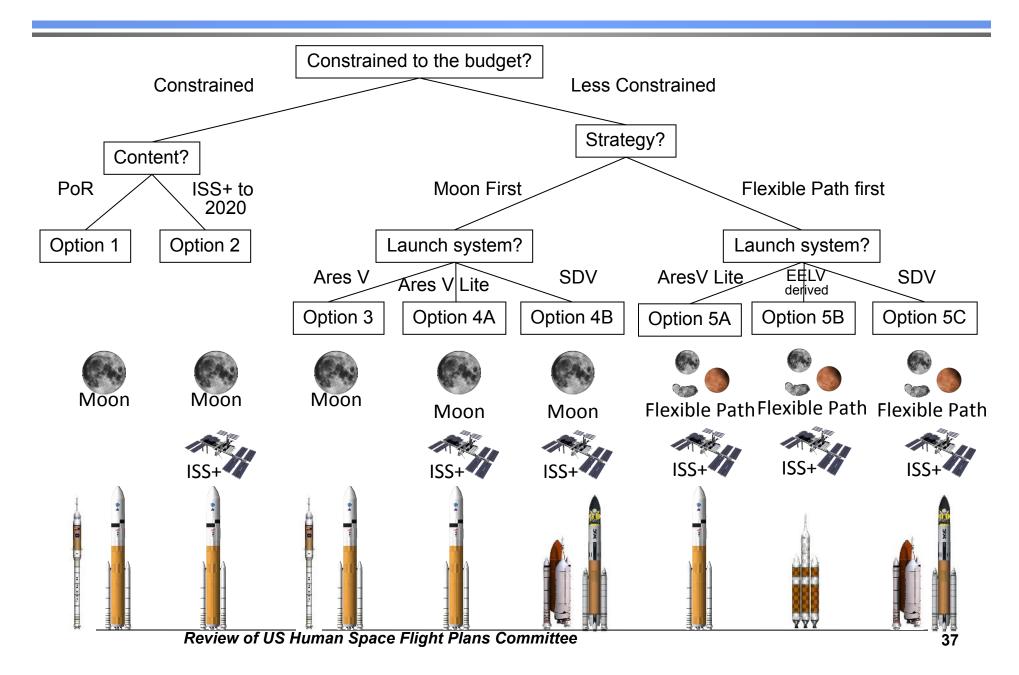
Creating the Final Level 1 Architecture


- The final level 1 architecture is not found by working down to level 1 from level 0, but working up from level 2
- "2 down, 1 up"
- Start with the system at level 2
- Find appropriate modularization at level 1
- That will balance all of the important considerations and (hopefully) find that they cleave along the same "planes"

,			R	ese	erva	itio	n	Т	icke	et			Pas	sen	ger			Checked Bags					Carry Bags				Secondary		
This is			linking	learning	reserving	purchasing	amending	changing	issuing	crediting	arriving at airport	inspecting	embarking	transporting	disembarking	evacuating	departing airport	checking	loading	shipping	unloading	collecting	examining	storing	conveying	collecting	alerting	informing	entertaining nourishing
modularization		linking	2	2	2	2	2	2	1	1	1	1	1	0	1	1	1	2	0	0	0	1	1	1	0		1	1	1 1
	ir 1	learning	2	3	3	2	3	2	1	1	1	1	1	0	1	1	1	2	0	0	0	1	1	1	0	1	1	1	1 1
by functional	Cluster	reserving	2	3	4	3	4	3	2	2	1	2	1	0	1	1	1	3	1	0	1	2	2	1	0	1	1	1	1 1
interaction	G	purchasing	2		3	4	4	4	3	2	1	2	1	0	1	1	1	3	1	0	1	2	2	1	0	1	1	1	1 1
	7	amending	2	3	4	4	5	4	3	2	1	2		0	1	1	1	3	1	0		2	2	1	0	1	1	1	1 1
Must also	er 2	changing	2	2	3	4	4	5	4	2	1	2	2	0	-	2	1	3	1	0		2	2	2	0	_	2	1	2 2
	Cluster	issuing	1	1	2	3	3	4	4	2	0	1	1 0	0	_	1	0	2	1	0	1	1	1	1	0	_	_	0	1 1
consider from,	0	crediting	1		2	2	1	2 1	2	2	4	1	-	0	0	0	0	2	1	0	1	1	1	0	0	0	0	0	0 0
integration,		arriving at airport inspecting		1	2	2	1 2	2		1	4	3	3	1 0	3	2	4	2	1	1	 1	2	2	2	1	2	1	 1	$\frac{1}{1}$ $\frac{1}{1}$
•	ň	embarking	1	1	1	1	1	2		0	3		4	1	4	3	3	1	0	-				3	Ŭ	2	_	1	2 2
legacy,	Cluster	transporting	0	0	0	0	0	0				0	1	1	1	1	1	0	0	0			0			0	0	0	0 0
suppliers, etc.	CIL	disembarking	1	1	1	1	1	2	1	0	3	1	4	1	4	3	3	1	0	0	0	1	1	3	1	2	2	1	2 2
		evacuating	1	1	1	1	1	2	1	0	2	1	3	1	3	3	2	1	0	0	0	1	1	2	0	1	2	1	2 2
Good		departing airport	1	1	1	1	1	1	0	0	4	1	3	1	3	2	4	1	1	1	1	2	1	2	1	2	1	1	1 1
	+	checking	2		3	3	-	3	2	2	1	2	1	0	1	1	1	4	1	0		3	2	1	0	1	1	1	1 1
modularization	ter 4	loading	0	-	_	1	1	1	1	1	1	1	0	0	0	0	1	1	2	1	2	2	1	0	_			0	0 0
is a key step to	Cluster 4	shipping unloading	0	-	Ŭ	0	0	0	0	0	1	0	0	0	0	0 0	1	0	1	1 1	1	1	0	0		-	_	0	00
•	-	collecting	1	1	2	2	2	2	1 <u>1</u>	 1	2	2	1	0	1	1	1 2	⊥ ר	2	1	2	2 	2	1	0		1	1	1 1
making complex		examining	1	1	2	2		2		1	1	2	1	0	1	1	1	2	1	0	_	2	3	1	0	-	1	1	1 1
systems less	er 5	storing	1	1	1	1	1	2	1	0	2	1	3	0	3	2	2	1	0	0		1	1	3	1	2	2	1	2 2
•	Cluster	conveying	0	0	0	0	0		0	0	1	0		0	1	0	1	0	0			0	0	1	1	1	0	0	0 0
complicated	0	collecting	1	1	1	1	1	1	0	0	2	1	2	0	2	1	2	1	0	0	0	1	1	2	1	2	1	1	1 1
	9	alerting	1	1	1	1	1	2	1	0	1	1	2	0	2	2	1	1	0	0	0	1	1	2	0	1	3	1	2 2
	ter 6	informing	1	1	1	1		1		_		1		0		1	1	1	0				-	1			_	2	1 1
	Clu	entertaining	1	1	1	1	1	2		0		1	2			2		1	0					2			2	_	3 2
	-	nourishing	1	1	1	1	1	2	1	0	1	1	2	0	2	2	1	1	0	0	0	1	1	2	0	1	8	id é 3	2 2 3

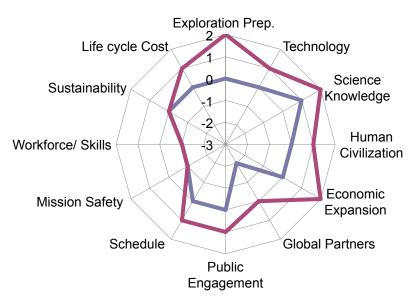

Augustine Human Space Flight Committee 2009: Stakeholder Based Evaluation Measures

Evaluation Measure		Trace	ability	,	Criteria
	Space Act	VSE 2004	GES 2007	OSTP 2009	
Exploration Preparation	1	1	1	1	Capable systems and ops for robust exploration beyond LEO
Technology Innovation	1	1	1	1	Enable new modes of exploration and leadership in innovation
Science Knowledge	1	1	1	1	Aligned with goals of scientific community
Expanding Human Civilization		1	1		Sustained human presence off planet, and protection of Earth
Public Engagement			1	√	Motivate and inspire; Societal benefits, regular new accomplishments
Economic Expansion	1	1	1	1	Growing profitable industrial base and commercial engagement
Global Partnership	1	1	1	1	Leverage & expand Intl partnerships


Decisions that Frame Policy

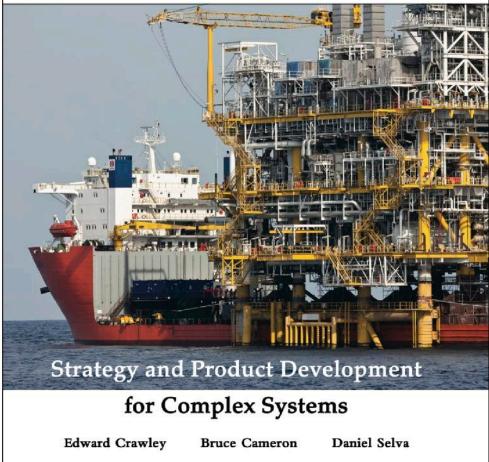
- 1. What is the phase out plan of the Shuttle?
 - -As planned in 2012, extend?
- 2. What is the future of the ISS?
 - End in 2015, extend to 2020?
- 3. What is the strategy for exploration beyond LEO?
 - Moon first, flexible
- 4. Should the government developed launch system be based on: -NASA Ares, Ares lite, direct shuttle derivative or an EELV
 - heritage systems?
- 5. How should crew be carried to LEO (ISS in particular)
 - -Commercial or US Government supplied

High Level Decision Evolution of the Committee



Suggested Integrated Option Decision Analysis

Relative Value Analysis – Baseline vs. Flexible Path (Ares V Lite) Less Constrained Options


- The Flexible Path (with Ares V Lite) dominates the Baseline:
 - Exploration preparation (much mor capable launch system)
 - Technology (investment)
 - Science (more places visited)
 - Human civilization (ISS extension)
 - Economic expansion (in space commercial elements and crew)
 - Global partnerships (ISS)
 - Public engagement (more new things)
 - Schedule (out of LEO sooner)
 - Life cycle costs
- This is a significant difference in benefi. for the same investment!

Option 3: Baseline - Program of Record (less constrained)

Option 5A: Flexible Path - Ares

System Architecture

Foreword by Norman R. Augustine

Outcomes

- Developed a rigorous engineering discipline with design principles, semantically exact ISO approved notation, and some ability to compute
- Applied successfully to technical systems of wide variety
- Educated thousands of young and mid career professionals
- Created texts and online education

References

- Crawley, Cameron, Selva, <u>System Architecture</u>, Pearson 2016
- Dori, <u>Model-Based Systems Engineering with OPM and SysML</u> Springer 2016
- Augustine, Report of the US Human Space Flight Plans Committee, NASA 2009
- MITx: Architecture and Systems Engineering http://web.mit.edu/ professional/digital-programs/online-course/syseng/index.html